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Abstract 

 

Objectives: Normal sleep is crucial for brain health. Recent studies have reported robust 

associations between sleep disturbance and various brain structural and functional traits. 

However, the complex interplay between sleep health and macro-scale brain organization 

remains inconclusive. In this study, we aimed to uncover the links between brain imaging 

features and diverse sleep health-related characteristics by means of Machine Learning (ML). 

 

Methods: We used 28,088 participants from the UK Biobank to calculate 4677 structural and 

functional neuroimaging markers. Then, we employed them to predict self-reported insomnia 

symptoms, sleep duration, easiness getting up in the morning, chronotype, daily nap, daytime 

sleepiness, and snoring. We built seven different linear and nonlinear ML models for each 

sleep health-related characteristic to assess their predictability. 

 

Results: We performed an extensive ML analysis that involved more than 100,000 hours of 

computing. We observed relatively low performance in predicting all sleep health-related 

characteristics (e.g., balanced accuracy ranging between 0.50-0.59). Across all models, the 

best performance achieved was 0.59, using a Linear SVM to predict easiness getting up in the 

morning. 

Conclusions: The low capability of multimodal neuroimaging markers in predicting sleep 

health-related characteristics, even under extensive ML optimization in a large population 

sample suggests a complex relationship between sleep health and brain organization. 

 

Keywords: Sleep health; grey matter volume; white matter; functional MRI; UK Biobank; 

machine learning 
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Introduction 

Sleep is a non-negotiable human need, which has pivotal impacts on memory processing, 

metabolite clearance, immune system adaptation, optimal cognition, and mental health 

(Walker, 2021). The intricate relationship between sleep, brain, and behavior has recently 

garnered significant scientific attention (Cheng et al., 2018; Ell et al., 2023; Fjell, Sørensen, 

Wang, Amlien, Baaré, Bartrés-Faz, Bertram, et al., 2023; Li et al., 2022; Tahmasian et al., 2020; 

Wang et al., 2023; Weihs et al., 2023). Sleep health (SH) is a multidimensional concept that 

includes assessment of satisfaction, alertness, regularity, timing, and duration of sleep 

(Buysse, 2014), which is considered a crucial indicator of human well-being. Seven different 

SH-related characteristics i.e., sleep duration, easiness/difficulty getting up in the morning, 

chronotype, nap, daytime dozing/sleepiness, as well as insomnia symptoms and snoring 

reflecting various SH dimensions were collected in half a million participants in the UK Biobank 

(UKB) (Bycroft et al., 2018; Miller et al., 2016). This large-scale population data presents a 

unique opportunity to explore the link between various SH dimensions and brain 

structure/function, overcoming the low reproducibility of previous small sample studies 

(Arora et al., 2023; Cribb et al., 2023; Ell et al., 2023; Kyle et al., 2017; Li et al., 2022).  

The complex interplay between various SH dimensions and brain structure and 

function has been reported. Sleep disturbance conditions, including insomnia symptoms 

(Elberse et al., 2024; Holub et al., 2023; Weihs et al., 2023), sleep-disordered breathing (Akradi 

et al., 2023; André et al., 2020; Mohajer et al., 2020) , and abnormal sleep duration, (González 

et al., 2024; Li et al., 2022) exemplify the inconclusive association between sleep and the brain. 

Schiel and colleagues using UKB data and Weihs and colleagues using the general population 

and clinical ENIGMA-Sleep datasets did not observe any strong link between insomnia 

symptoms/disorder and grey matter volume (GMV) (Schiel et al., 2023; Weihs et al., 2023). 

However, Stolicyn and colleagues showed that insomnia symptoms are associated with higher 

global gray and white matter volume, mainly in the amygdala, hippocampus, and putamen 

(Stolicyn et al., 2023). Moreover, individuals with insomnia symptoms demonstrated altered 

functional connectivity (FC) within and between the default mode network (DMN), 

frontoparietal network (FPN), and salience network (SN) (Holub et al., 2023). Neuroimaging 

meta-analyses found convergent regional abnormalities in the subgenual anterior cingulate 

cortex (sgACC) in insomnia disorder (Reimann et al., 2023), right basolateral 
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amygdala/hippocampus and the right central insula in obstructive sleep apnea (OSA) 

(Tahmasian et al., 2016), the right intraparietal sulcus and superior parietal lobule in acute 

sleep deprivation (Javaheripour et al., 2019), while the pattern for narcolepsy was 

inconsistent (Rahimi-Jafari et al., 2022). One study using UKB data found that short sleep 

duration is linked with lower amygdala reactivity to negative facial expressions (Schiel et al., 

2022). The non-linear associations have been documented between sleep duration, cognitive 

performance, mental health (Li et al., 2022; Tai et al., 2022), and a wide range of regional 

differences in brain structure, mainly in the subcortical areas (Schiel et al., 2023; Stolicyn et 

al., 2023; Tsiknia et al., 2023). Fjell and colleagues performed cross-sectional analyses based 

on the UKB sample, indicating inverse U-shaped relationships between sleep duration and 

brain structure, i.e., 6.5 hours of sleep was associated with increased cortical thickness and 

subcortical volumes relative to intracranial volume. However, they failed to identify a 

longitudinal association between sleep duration and cortical thickness (Fjell, Sørensen, Wang, 

Amlien, Baaré, Bartrés-Faz, Bertram, et al., 2023). In another study, they found that  

individuals who reported short sleep without other sleep problems or daytime sleepiness had 

larger brain volumes compared to both short sleepers with sleep issues and daytime 

sleepiness, as well as those who slept 7−8 hours (Fjell, Sørensen, Wang, Amlien, Baaré, 

Bartrés-Faz, Boraxbekk, et al., 2023). An analysis of chronotypes showed that evening 

chronotype is linked with higher GMV in the precuneus, bilateral nucleus accumbens, caudate, 

putamen and thalamus, and orbitofrontal cortex (Norbury, 2020). Another study observed 

the associations between chronotype and neuroimaging phenotypes to be mediated by 

genetic factors (Williams et al., 2023). Self-reported daytime sleepiness has been reported to 

be related to higher cortical GMV (Baril et al., 2022). These findings represent an overall 

inconsistency in the relationship between insomnia, sleep duration, chronotype, and daytime 

sleepiness with the brain structure and function. The inconclusiveness of these studies may 

be due to SH being an inhomogeneous concept. Thus, a comprehensive analysis of brain 

structure and function is crucial for understanding the intricate dynamics of SH and its 

neuropsychiatric consequences. While these studies employed traditional statistical methods 

and provided valuable insights into the link between each SH dimension and the brain, they 

were mostly case-control studies and might not have been able to model the complex 

interplay between the brain and a complex behavioral phenotype such as SH (Kendler, 2005). 

Moreover, the large inter-individual variability of SH and the differential associations of SH 
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dimensions with the brain structure and function measurements, call for more sophisticated 

computational approaches (Bzdok & Yeo, 2017; Woo et al., 2017).  

Machine learning (ML) offers a powerful tool to unravel complex relationships, 

providing a more nuanced representation than traditional statistical approaches, which is 

critical in precision medicine (Varoquaux et al., 2017; Vieira et al., 2017). ML models can 

consider complex multivariate linear and nonlinear relations to make brain-behavior 

predictions on unseen brain imaging data and have the potential to identify generalizable 

patterns in SH-related neurobiology at the individual subject level (Afshani et al., 2023; 

Goldstein-Piekarski et al., 2020; Olfati et al., 2024b), surpassing conventional group 

comparisons and correlations. In particular, nonlinear models are necessary to capture 

patterns particularly for sleep duration. Accurate predictive models can contribute to refining 

our theoretical understanding of the SH-brain relationship. This might pave the way for 

developing more effective clinical strategies to enable personalized interventions and 

treatments (Murdoch et al., 2019).Directional genetic analyses using Mendelian 

randomization demonstrated that altered SH dimensions are more a consequence than a 

cause of brain abnormalities (Fan et al., 2022).  In this study, we employed large-scale 

neuroimaging data from the UKB, exploring whether and how multimodal brain 

measurements (i.e., structural markers including GMV, surface-based morphometric features, 

as well as intrinsic functional imaging markers of local correlation (LCOR), global correlation 

(GCOR), and fractional amplitude of low-frequency fluctuations (fALFF)) can differentiate 

between well-separated conditions in each SH-related characteristic (e.g., differentiating 

individuals usually having insomnia symptoms from individuals without insomnia symptoms). 

Methods 

Participants 

We selected the data of the first imaging visit (instance 2) from the UKB 

(http://www.ukbiobank.ac.uk), recorded from 2014 onwards at three different sites in the UK 

(Cheadle, Reading, Newcastle). The acquisition parameters and protocol of both the 

structural and functional MRI are as described previously (Miller et al., 2016). We included all 

individuals who participated in the imaging session, and their data had already been 

preprocessed and denoised by the UKB team (Alfaro-Almagro et al., 2018). Thus, no particular 

in-/exclusion criteria have been applied in this sample to be representative of the general 
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population. A total of 28088 participants, 47% male and 64.1 years old on average (58 – 78 

years IQR), were included.  The UKB project is approved by the NHS National Research Ethics 

Service (Ref. 11/NW/0382), and all participants gave written informed consent before 

participation. Ethical standards are continuously controlled by a Ethics Advisory Committee 

(EAC, http://www.ukbiobank.ac.uk/ethics), based on a project-specific Ethics and 

Governance Framework (http://www.ukbiobank.ac.uk/wp-

content/uploads/2011/05/EGF20082.pdf). The current analyses were conducted under UK 

Biobank application number 41655. 

 

Sleep health characteristics 

The multifaceted definition of SH in UKB is based on previous SH studies (Buysse, 2014; Ell et 

al., 2023; Goodman et al., 2024; Holub et al., 2023; Schiel et al., 2022, 2023). Accordingly, the 

seven SH-related characteristics were self-reported insomnia symptoms, sleep duration, 

difficulty/easiness of getting up in the morning, chronotype, daily nap, daytime sleepiness, 

and snoring (category 100057), obtained from the touchscreen questionnaire. As these 

questions were asked at every visit, we selected the responses from the visit matching the 

neuroimaging acquisition visit. 

• Sleeplessness/insomnia field (field 1200): “Do you have trouble falling asleep at night 

or do you wake up in the middle of the night?”, which could be answered as 

“never/rarely”, “sometimes”, “usually” or “prefer not to answer”.  

• Sleep duration (field 1160): “How many hours sleep do you get in every 24 hours?”. 

• Getting up in the morning (field 1170): “On average a day, how easy do you find 

getting up in the morning?”, with four answers spanning from not at all easy to very 

easy, as well as “do not know” and “prefer not to answer”. 

• Chronotype (i.e., morning/evening person, field 1180): “What do you consider 

yourself to be?”, with four possible answers spanning from a “morning person” to an 

“evening person”, as well as “do not know” and “prefer not to answer”. 

• Nap during the day (field 1190): “Do you have a nap during the day?”, which can be 

answered as “never/rarely”, “sometimes”, “usually” or “prefer not to answer”. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.13.618080doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.13.618080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

• Daytime dozing (field 1220): “How likely are you to doze off or fall asleep during the 

daytime when you don't mean to? (e.g. when working, reading or driving)”, which can 

be answered as “never/rarely”, “sometimes”, “often” or “prefer not to answer”. 

• Snoring (field 1210): “Does your partner or a close relative or friend complain about 

your snoring?”, with “yes”, “no”, “do not know” and “prefer not to answer” as possible 

answers. 

Given the ambiguous meaning that some questions, and consequently the respective 

answers, potentially have in the UKB data (e.g. “sometimes” vs “often”), and to simplify the 

multiclass/continuous target problems into binary classification problems, we first analyzed 

the performance of models aimed at distinguishing the extreme answers of each SH-related 

characteristic. In the case of the continuous answer regarding sleep duration in hours, we split 

the distribution into four quantiles, selecting the first and fourth quantiles as two classes. 

However, given the concentration of answers around the median (7 hours), this resulted in 

discarding only the samples that replied 7 hours. The rationale behind considering the 

extreme values as class labels is to simplify the classification task, resulting in higher predictive 

performance if there is indeed a relationship between brain imaging data and each SH-related 

characteristic. A description of the considered answers for each question, as well as the 

number of samples for each class, can be seen in Table 1.  

Sleep health-related 

characteristic 

Extreme Values 

Class 0 Class 1 

Answer(s) #Samples Answer(s) #Samples 

Insomnia symptoms “Never/rarely” 

 

6127 “Usually” 8846 

Sleep duration 1st quantile [0-6] 6760 4th quantile [8-16] 9959 

Getting up in the morning “Very Easy” 10687 “Not at all easy” 

“Not very easy” 

3554 

Morning/Evening 

chronotype 

“Definitely a 

‘morning’ 

person” 

7145 “Definitely an ‘evening’ 

person” 

2398 

Daytime nap “Never/rarely” 15915 “Usually” 1565 

Daytime sleepiness* “Never/rarely” 21406 “Sometimes” 

“Often” 

6458 

Snoring* “Yes” 16439 “No” 9469 
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Table 1. List of answers used for each SH-related characteristic to convert the ambiguous answers into binary 

classification problems. *denotes the questions for which no samples were dropped. 

 

Processing of Imaging data 

Grey Matter Volume (GMV): T1-weighted pre-processed images were retrieved from UKB 

with subsequent computations of voxel-based morphometry (CAT 12.7 (default settings); 

MNI152 space; 1.5mm isotropic)(Gaser et al., 2023). For each region of interest (ROI), we 

computed the  GMV using the winsorized mean (limits 10%) of the voxel-wise values using 

the cortical Schaefer atlas (1000 regions of interest, ROIs) (Schaefer et al., 2018), the 

Melbourne subcortical atlas (S4 3T, 54 ROIs) (Tian et al., 2020), and the Diedrichsen cerebellar 

atlas (SUIT space, 34 ROIs) (Diedrichsen et al., 2009). This resulted in 1088 GMV features 

extracted. 

Brain Surface: We used the data processed using FreeSurfer 6.0 as provided by the UKBi. This 

includes gray/white matter contrast, pial surface, white matter surface, white matter 

thickness, and white matter volume from the 68 ROIs of the Desikan-Kiliany parcellation 

(Desikan et al., 2006), totaling 328 features.  

Resting-state Functional Magnetic Resonance Imaging (rsfMRI): The fractional amplitude of 

low-frequency fluctuations (fALFF) represents the relative measure of blood oxygenation 

level-dependent (BOLD) magnetic resonance signal power within the low-frequency band of 

interest (0.008 - 0.09 Hz, reflecting the spontaneous neural activity of the brain) as compared 

to the BOLD signal power over the entire frequency spectrum (Zou et al., 2008). The LCOR 

(“local correlation”) is a metric that represents the local coherence for each voxel. It is 

computed as the average of correlation coefficients between a voxel and a region of 

neighboring voxels, defined by a 25 mm Gaussian kernel (Deshpande et al., 2009). On the 

other hand, the GCOR (“global correlation”) represents the node centrality of each voxel and 

is computed as the average of the correlation coefficients between a voxel and all voxels of 

the whole brain. These metrics were calculated using MatLab2020b, SPM12 (Friston et al., 

2007), FSL (version 5.0) (Jenkinson et al., 2012), and the CONN toolbox (Whitfield-Gabrieli & 

Nieto-Castanon, 2012). The voxel-wise data was then aggregated parcel-wise by averaging 

 
i see https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1/-/tree/master/bb_FS_pipeline for the 

exact pipeline used. 
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according to the parcellation of the GMV data (see above), resulting in 1087 features for each 

metric (fALFF, LCOR, and GCOR), totaling 3261 features derived from rsfMRI. Note that 

Diedrichsen cerebellar atlas produced 33 features for the fMRI data as for some ROIs, there 

were not enough voxels to compute the values correctly. 

 

Samples, Features, and Targets 

Among the (~500,000  participants in the UKB), we selected the individuals for which all the 

features were computed, resulting in a total N of 28,088 with a total of 4,677 brain features. 

The number of variables and samples for each neuroimaging feature is described in 

Supplementary Table 1.  

 

ML models 

In order to evaluate a broad spectrum of possible interactions between features and relations 

to the targets, we selected five machine learning algorithms, including parametric and non-

parametric models, testing for linear and nonlinear relations. We tested a Random Forest 

(Breiman, 2001), Extremely Randomized Trees (Extra Trees) (Geurts et al., 2006), Support 

Vector Machine (SVM) (Cortes & Vapnik, 1995), Logistic Regression (logit), and Stacked 

Generalization (Wolpert, 1992), with different hyperparameter settings, resulting in seven 

models. Table 2 summarizes the models, including the hyperparameters tested, except for 

the Stacked Generalization model, which is described below. When more than one 

hyperparameter value was listed, the best hyperparameter value was selected using nested 

cross-validation (CV), using a grid search approach with a stratified 5-fold CV. The Stacked 

Generalization model consisted of a Linear SVM with heuristic C (R: Fast Heuristics For The 

Estimation Of the C Constant Of A..., n.d.) (model LinearSVMHC) for each type of 

neuroimaging feature (GMV, Surface, fALFF, GCOR, and LCOR) as the first level. The output of 

each of these five models were used as features of a second-level logistic regression model. 

For training the second-level model, the out-of-sample predictions of the first-level models 

were obtained using a stratified 5-fold CV scheme. An overview of the general methodological 

approach from brain-images and questionaires data to the evaluation of ML models is 

depicted in Figure 1. 
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# Name Learning 

Algorithm 

Hyperparameter Values 

1 GSET Extra Trees estimators 200, 500 

   Criterion Gini, entropy, log loss 

   Max features Sqrt, log2 

2 GSRF Random 

Forest 

estimators 200, 500 

   Criterion Gini, entropy, log loss 

   Max features Sqrt, log2 

3 GSSVM-RBF SVM Kernel Rbf 

   C 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100, 

1e4, 1e5, 1e6  

   Gamma 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 

1e-1, 1, 10, 100, 1e4 

4 GSLinearSVM Linear SVM C 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100, 

1e4, 1e5, 1e6 

5 LinearSVMHC Linear SVM C heuristic(R: Fast Heuristics 

For The Estimation Of the C 

Constant Of A..., n.d.) 

   dual False 

   penalty L1 

6 LogitHC Logit C heuristic  

   dual False 

   penalty L1 

 

Table 2: List of models tested, including learning algorithms and hyperparameters evaluated. 
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Figure 1.  Overview of the methodology. The brain images were processed in order to obtain cortical and 

subcortical features, both from structural an functional brain imaging. Answers for the UKB questionnaire were 

binarized by selecting the extremes of the distributions as described in Table 1. We then evaluated the out-of-

sample performance of 7 different ML- models, independently for each SH-related characteristic. 

 

Model evaluation 

The available data was first split into 70% training and 30% hold-out test sets to avoid data 

leakage. Then, the generalization performance of the models (i.e. the capacity to generalize 

to unseen data) was evaluated on the training set using a stratified 5-fold cross-validation 

scheme, repeated five times, resulting in 25 evaluation runs. Finally, to validate the CV 

performance estimation, the models were retrained on the full training set and tested on the 

hold-out test set. To evaluate different aspects of model performance, such as the trade-off 

between specificity and sensitivity, we computed four metrics: balanced accuracy, F1 score, 

area under the receiver-operator characteristic (ROC) curve, and average precision. Balanced 

accuracy is computed as the relative number of correct predictions over the total samples, 

weighted by the number of elements in each class so that the chance level is set at 0.5 and 1 

would mean a perfect classification. The F1 score is the harmonic mean between precision 

and recall (Hastie et al., 2001). In short, it measures the model’s balanced ability to detect 

positives (recall = sensitivity) and to have high precision (= positive predictive value), that is, 

a low rate of false-positive detections. The area under the receiver operating characteristic 
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(ROC) curve (ROC-AUC) provides an aggregate measure of performance across all possible 

classification thresholds by plotting the true-positive rate (sensitivity) over the false-positive 

rate (1 – specificity) for each threshold level.  Shortly, ROC-AUC can be interpreted as the 

probability that given two predictions, the model ranks them in the correct order. A perfect 

model with sensitivity and specificity being equal to 1 at all threshold levels, will have a ROC-

AUC of 1, while random guessing will result in ROC-AUC of 0.5 (Hastie et al., 2001). Given that 

ROC-AUC is skewed for imbalanced datasets, which is the case for all the SH dimensions (see 

Table 1), a more suitable metric is the area under the Precision-Recall curve (Davis & 

Goadrich, 2006), also known as average precision. This metric considers both recall and 

precision like the F1-score, but across all thresholds as the ROC-AUC does. A perfect model 

will yield an average precision of 1, while chance levels depend on class balance.  

To obtain reference values for each metric, we used the performance of two baseline 

models, which do not use the features but rely solely on the distribution of classes during 

training time. A first baseline model named majority always predicts the value of the most 

frequent class in the training set. A second baseline model named chance draws random 

predictions weighted by the number of training samples in each class. All models for each SH 

dimension were evaluated using the same 5 x 5 CV folds. We then used the corrected paired 

Student’s t-test for comparing the CV performance of the machine learning models (Nadeau 

& Bengio, 2003) and corrected for multiple comparisons (across models) using the Bonferroni 

method. All the analysis described was implemented using Julearn (Hamdan et al., 2024) and 

Scikit-learn (Pedregosa et al., 2012). The codes are available on GitHub: 

https://github.com/juaml/ukb_sleep_prediction. 

 

Results 

We first trained and evaluated all seven models for each of the seven SH-related 

characteristics, a procedure that took 119314 core-hours,  which is approximately 13 years 

on a single-core processor or eight years on an 8-core desktop computer. For each SH-related 

characteristic and metric, we selected the best model among the seven competing models 

according to the performance of the respective metric upon evaluation on 5 x 5 = 25 CV-folds. 

This resulted in one model per SH-related characteristic and metric, which were then applied 
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to the 30% hold-out test set. The performance of the best model for each SH-related 

characteristic and metric can be seen in Figure 2.  A complete description of the estimated 

performances for each metric can be seen in Supplementary Table 2.  

When only considering the CV performance (which is commonly reported in research 

settings), some of the SH-related characteristics showed a modest predictability on several 

metrics. For instance, the best models for insomnia and sleep duration showed modest 

balanced accuracy (0.588 and 0.584) and AUC-ROC (0.549 and 0.553) and relatively high F1-

score (0.725 and 0.739) and average precision (0.664 and 0.658). However, since some SH-

related characteristic have imbalanced classes, it is important to note the performance of the 

baseline models. For example, the F1 score for insomnia and sleep duration is below the 

performance of the majority baseline model, meaning that a model that simply assigns the 

majority class to each sample showed a better F1 score. The limitation of AUC-ROC with 

imbalanced data also becomes clear for the easiness getting up characteristic, which showed 

a relatively high AUC-ROC but relatively lower average precision. Furthermore, as cross-

validated performances could be overestimated (Varoquaux, 2017), we evaluated the models 

on the hold-out data (30% of the samples). The obtained results fall within the confidence 

intervals of the CV-estimated performances (black lines in Figure 1), suggesting that no over-

estimation happened in our case. For more details on the values obtained for each model and 

SH-related characteristic, see Supplementary Table 3. Overall, our results indicate a weak 

predictive power but systematically above baseline models for each of the seven SH-related 

characteristics.  

A common ML pitfall with a lack of predictive power is overfitting. This occurs when 

the model closely learns the idiosyncrasies of the training data, thus being incapable of 

making correct predictions on new unseen samples. To verify that this is not the case, we 

computed the same metrics for each model but on the training samples. That is, how well 

each model memorized the training data. The results indicate that while some models were 

indeed overfitting, at least one model per SH-related characteristic was not (Supplementary 

Table 4). Given the comparable out-of-sample performance across models for each SH-

related characteristic, and that the hyperparameters were selected in nested CV to prevent 

overfitting, we can safely conclude that overfitting is not a major issue in our results.  
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Figure 2.  Performances of the best model for each SH-related characteristic. Each blue dot represents the 

performance obtained at each of the 25 test folds within cross-validation (CV). Boxplots summarize the medians 

and 95% CI for the underlying distribution. As a reference, dashed red lines depict the mean performance of a 

model that constantly predicts the most frequent class, green lines depict the mean performance of a model that 

draws random predictions weighted by the number of samples in each class, and black lines indicate the 

performance on the hold-out (validation) data. 
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Discussion 

The current large-scale study systematically evaluated ML-based predictive analysis for 

classifying extremes of seven different SH-related characteristics based on multivariate 

neuroimaging markers in UKB. Notably, we covered a large space of multimodal neuroimaging 

features covering brain structure and function, several ML algorithms in a nested cross-

validation setting, and a hold-out test set evaluated on four metrics. Our striking findings 

demonstrated that the balanced accuracy for predicting SH-related characteristics did not 

exceed 56%, which indicates that brain structure and function measures could not accurately 

predict any of the seven SH-related characteristics. The slight improvement over baseline 

models across the evaluation metrics suggests that the ML algorithms indeed captured some 

underlying patterns in the data. However, we do not consider these results as high predictive 

accuracy compared to other brain-imaging-based predictions, such as sex (Schulz et al., 2024; 

Wiersch et al., 2023), neurodegenerative diseases (Kasper et al., 2023), and depressive 

symptoms severity (Olfati et al., 2024b). Put differently, we did not observe sufficiently strong 

evidence to claim that the brain measures can predict SH-related characteristics. Our findings 

raise the question of whether the results imply a true absence of a strong relationship 

between the SH-related characteristics and the brain imaging features, and if so, then what 

are the main sources of such results? In the following, we discuss the potential reasons for 

the poor efficacy of multimodal brain features in predicting SH-related characteristics. 

Target issues: Sleep health is a heterogenous concept 

Our findings align with previous large-scale sample studies using e.g., UKB and ENIGMA-Sleep 

datasets that did not observe an association between brain structure and insomnia symptoms 

(Schiel et al., 2023; Weihs et al., 2023) and sleep duration (Fjell, Sørensen, Wang, Amlien, 

Baaré, Bartrés-Faz, Bertram, et al., 2023). SH has a heterogeneous definition across different 

general population datasets, as well as clinical samples. Although some studies used a 

standard sleep questionnaire such as the Pittsburgh Sleep Quality Index (PSQI) to assess sleep 

quality or the Regulatory Satisfaction Alertness Timing Efficiency Duration (RU-SATED) 

questionnaire as a valid measure of SH (Ravyts et al., 2021), the UKB did not use such a 

standard questionnaire and instead provided seven self-reported questions about sleep 

duration, difficulties in getting up in the morning, chronotype, nap, daytime sleepiness, and 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.13.618080doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.13.618080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

two measures of clinical conditions such as insomnia symptoms and snoring. SH is a complex 

concept and considering these single questions could have affected the clarity and 

meaningfulness of measured SH. Furthermore, accuracy of self-report sleep assessment 

based on seven single items and selective participation biases could have led to measurement 

issues, which have been highlighted previously  (Schoeler et al., 2023).  Taken together, these 

may have resulted in the observed low prediction performance when using brain imaging 

features to predict SH by ML �models�.  

Another critical aspect is differentiating the sleep-related symptoms of insomnia and 

snoring we considered here from clinical conditions. It is well-documented that Insomnia 

disorder is a heterogeneous condition with different subtypes with noticeable inconsistencies 

in terms of pathophysiology, symptomatology, and treatment response (Blanken et al., 2019; 

Bresser et al., 2024; Emamian et al., 2021; Holub et al., 2023; Reimann et al., 2023; Schiel et 

al., 2022; Weihs et al., 2023). According to the third edition of the International Classification 

of Sleep Disorders (ICSD-3) (Sateia, 2014), significant daytime dysfunction and having 

adequate opportunity and circumstances to sleep are essential diagnostic criteria for 

insomnia disorder. Similarly, snoring can have several etiologies beyond it being a cardinal 

symptom of OSA, including genetic factors, obesity, nasal blockages, alcohol abuse, smoking, 

or medications (Campos et al., 2020). Thus, relying on a single question about sleep problems 

is not sufficient to define clinical insomnia disorder or OSA.  

Additionally, the imbalance in target labels significantly influences model 

performance, hindering the learning of sufficient information for accurate classification. 

Particularly for SH-related characteristic such as 'easiness getting up in the morning,' 'Day 

Naps,' and 'Daytime Dozing,' the uneven distribution of target labels has resulted in models 

achieving moderate ROC-AUC scores around 0.6 while the balanced accuracy remained at 

chance level of approximately 0.5. This discrepancy between ROC-AUC and balanced accuracy 

highlights the challenges in achieving fairness and robustness in the models' predictive 

capabilities when dealing with imbalanced target datasets. 

 

Input features issues: regional brain measurements 

Our results also suggest that the neuroimaging features applied in our study may not capture 

the full spectrum of brain-related features relevant to SH or that the selected features may 
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not be sensitive enough to the subtleties of SH. Moreover, it raises the possibility that current 

feature sets are insufficiently granular to mirror the complex biological underpinnings of SH. 

The low performance of the models in predicting SH dimensions, therefore, points to the need 

for a deeper investigation into more sensitive and comprehensive neuroimaging metrics that 

can better encapsulate the factors influencing SH. SH might be associated with brain circuits 

that can be captured, e.g., via seed-based structural or FC measures rather than local brain 

abnormalities that we used from brain parcels, including GMV, gray/white matter contrast, 

pial surface, white matter surface, white matter thickness, and white matter volume, LCOR, 

and fALFF. It has been reported that insomnia symptoms were associated with higher FC 

within the DMN and FPN and lower FC between the DMN and SN (Holub et al., 2023). Wang 

and colleagues also found that SH dimensions are correlated with disrupted FC patterns in 

the attentional and thalamic networks in several datasets (Wang et al., 2023). Another study 

using UKB data found associations between SH and FC and structural connectivity. Within-

network hyperconnectivity in DMN, FPN, and SN has been observed in healthy subjects and 

patients with mild cognitive impairment with insomnia symptoms, while patients with 

Alzheimer’s disease and insomnia symptoms showed hypoconnectivity in those networks 

(Elberse et al., 2024). Although we included GCOR, representing functional correlations 

between a given voxel and other brain voxels (i.e., degree centrality), it didn’t improve the 

prediction when used as input with local markers together.  Thus, future studies could explore 

network-based and white matter integrity metrics as input features to predict SH in UKB. 

Our results also remind us to think beyond the brain feature modalities. Recently, we 

observed that sleep quality and anxiety robustly predict depressive symptoms severity across 

three independent datasets. Still, brain structural and functional features could not predict 

depressive symptoms, which indicated that brain imaging data may not be very helpful in 

predicting mental health (Olfati et al., 2024a). A large-scale study by the ENIGMA-Anxiety 

Consortium utilized ML to analyze neuroanatomical data for youth anxiety disorders, and also 

achieved only modest classification accuracy (AUC 0.59–0.63) (Bruin et al., 2024). This 

parallels findings from extensive ML optimization efforts with major depressive disorder 

(MDD), which observed mean accuracies in distinguishing patients from controls that ranged 

from 48.1% to 62.0% only, even when additionally provided with polygenic risk scores,, 

casting doubt on the potential diagnostic relevance of neuroimaging and genetic biomarkers 

for MDD (Winter et al., 2024). Similarly, the ENIGMA-MDD consortium's multi-site study 
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(Belov et al., 2024) achieved a balanced accuracy of only about 62% in classifying MDD versus 

healthy controls, which further dropped to approximately 52% after harmonization for site 

effect. Random chance accuracy was also observed across various stratified groups. These 

findings may point to an alternative view that complex psychiatric conditions such as sleep 

disturbance or depression represent deficits in the brain-body interaction, which suggests 

that body organ health measurements such as metabolic and cardiovascular systems, in 

addition to brain imaging, should be considered (Kendler, 2024; Tian et al., 2023). 

 

ML-related issues  

Following proper ML pipelining practices such as nested CV and grid search for meticulous 

hyperparameter tuning—methods that typically enhance a model's capacity to generalize—

our models did not achieve high predictive performance. The low classification performance 

in our study highlights the challenges inherent in developing models that accurately capture 

the complex nature of SH using brain imaging data. Machine learning models are designed to 

discern patterns and generalize findings to new, unseen data. However, like any statistical 

analysis, ML is challenged when the target labels are unreliable (Gell et al., 2024). We reduced 

the uncertainty in the labeling to some degree by using extreme values for each SH-related 

characteristic. This should make learning easier for the ML algorithms and boost accuracy. 

The low performance observed despite this simplification suggests that the prediction of SH-

related characteristic as a continuum could be more challenging.  Difficulty in creating 

generalizable ML models arises from potential heterogeneity in how SH is reflected in the 

brain. In this case, the ML models will not be able to learn a consistent pattern, leading to low 

performance. Further analysis of SH subtypes and more refined scales are needed to discern 

this possibility. Finally, several of our classification tasks were imbalanced, i.e. one of the 

classes was much more frequently present than the other. Such imbalance can lead to biased 

ML models, which in turn lack generalization ability. To this end, we employed AUC-ROC and 

average precision metrics for evaluating the ML pipelines. These metrics are independent of 

a threshold used for dichotomization and thus suitable for characterizing the performance in 

imbalanced datasets particularly with tree ensemble models (Collell et al., 2018). 

  

Strengths, limitations, and future directions  
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The present study has several advantages over other case-control SH-brain studies. Here, we 

calculated 4677 structural and functional brain features as input features from 28,088 

participants from the UKB and applied several ML algorithms to classify the extremes of seven 

SH-related characteristics. In particular, 1) including diverse and multimodal neuroimaging 

metrics is crucial. Multimodal data enriches the ML analysis, allowing for a more 

comprehensive exploration and interpretation of the neurobiological correlates of SH at both 

structural and functional levels; 2) we leveraged the detailed features provided by the 

Schaefer atlas (1000 ROIs), which is supported by our ample sample size. This approach 

assumes that if relevant information is present in an ROI, our models—given their 

complexity—are equipped to detect it, whether the information is concentrated within a 

single ROI or dispersed across several regions; 3) we carefully designed our ML analyses using 

fully separated train and test samples to avoid any leakage of the test set into the model, 

which is a common oversight in some ML studies (Sasse et al., 2024); 4) the ML analyses were 

conducted using several rather different algorithms including Random Forest, Extremely 

Randomized Trees, Support Vector Machine, Logistic Regression, and Stacked generalization; 

5) we applied a grid search-based hyperparameter optimization to prevent overfitting and 

increase the generalizability of our findings.  

Our results should be interpreted within the context of the study's limitations and the 

nascent state of this field. This study is based on seven proband answers to SH-related 

questions and did not include any objective sleep assessment such as polysomnography. 

Although polysomnography is recommended as a gold-standard objective measure for the 

diagnosis of several sleep disorders, including obstructive sleep apnea, its validity for 

insomnia or sleep quality assessment remains disputed (Frase et al., 2023). Moreover, some 

evidence showed only weak association between the subjective sleep measurement (e.g., 

PSQI) and polysomnography in patients with insomnia disorder (Benz et al., 2023). Here, we 

focused on self-reported information on SH. Thus, future studies should consider performing 

an ML analysis of objective sleep data and comparing it with the analysis of subjective data. 

In addition, the SH -related characteristics in the UKB sample do not represent cross-country 

sleep differences well. Recently, data from 63 countries showed that individuals from East 

Asia tend to sleep less and participants from East Europe report longer sleep duration 

(Coutrot et al., 2022). Similarly, another study on ~220,000 wearable device users in 35 
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Countries observed shorter sleep duration, later sleep timing, and less sleep efficiency in East 

Asia compared with Western Europe, North America, and Oceania, probably due to social- 

and work-related cultural differences regarding the coping with inadequate sleep and sleep 

debt (Willoughby et al., 2023). In addition, there are significant differences in daytime napping 

across cultures, being more common in non-Western countries (Willoughby et al., 2023). Of 

note, however, 10% of the UKB participants reported regular daily naps (Table 1). 

Future studies could apply normative modelling, a technique that studies deviations 

from population norms to show the range of inter-individual differences in brain structure. 

Unlike traditional case-control paradigms that rely on common neurobiological factors across 

all subjects, normative modelling focuses on individual deviations from normal patterns, 

making it a promising approach to consider inter-individual variability in brain expression of 

SH (Marquand et al., 2016; Rutherford et al., 2022). Furthermore, longitudinal studies can 

help identify the long-term interaction between the SH and the brain together with well-

characterized sleep measurements from collaborative research groups e.g., the ENIGMA-

Sleep consortium (Tahmasian et al., 2021) to provide replicable results.  

 

Conclusion 

The present extensive ML study using a large population sample demonstrated that 

multimodal neuroimaging markers had low efficacy in separating the extremes of various 

sleep health-related characteristics UKB. This suggests that the interaction between sleep 

health and brain organization may be more complex to be captured with the current ML 

models and neuroimaging features. While our methodological approach is comprehensive 

and aims to establish links between neuroimaging features and SH dimensions, this study 

acknowledges the complexity of interpreting neuroimaging in the context of sleep health. We 

need future cross-sectional and longitudinal studies considering brain circuits, objective sleep 

measurements, and cross-country sleep assessments to evaluate the sophisticated brain-

sleep interplay. 
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